\[
\newcommand{\ottnt}[1]{#1}
\newcommand{\ottsym}[1]{#1}
\newcommand{\ottmv}[1]{\mathit{#1}}
\newcommand{\func}[1]{\mathsf{#1}}
\newcommand{\Lin}[0]{\func{Lin}}
\newcommand{\Mny}[0]{\func{Mny}}
\newcommand{\Forget}[0]{\func{Forget}}
\newcommand{\Free}[0]{\func{Free}}
\newcommand{\Endo}[0]{\func{Endo}}
\newcommand{\mto}[1]{\xrightarrow{#1}}
\newcommand{\interp}[1]{[\negthinspace[#1]\negthinspace]}
\newcommand{\cat}[1]{\mathcal{#1}}
\newcommand{\catobj}[1]{\mathsf{Obj}(\cat{#1})}
\newcommand{\Obj}[1]{\catobj{#1}}
\newcommand{\catop}[1]{\cat{#1}^{\mathsf{op}}}
\newcommand{\sets}[0]{\mathsf{Set}}
\newcommand{\Set}[0]{\sets}
\newcommand{\mor}[1]{\mathsf{Mor}(\cat{#1})}
\newcommand{\Hom}[3]{\mathsf{Hom}_{#1}(#2,#3)}
\newcommand{\cur}[0]{\mathsf{cur}}
\newcommand{\curi}[0]{\mathsf{cur}^{-1}}
\newcommand{\app}[0]{\mathsf{app}}
\newcommand{\id}[0]{\mathsf{id}}
\newcommand{\injl}[0]{\mathsf{inj_l}}
\newcommand{\injr}[0]{\mathsf{inj_r}}
\newcommand{\pow}[1]{\mathcal{P}(#1)}
\newcommand{\oast}{⊛}
\]
My Ph.D. advisor Aaron Stump
shared a very interesting historical anecdote about \(\interp{\text{semantic brackets}}\). I
always thought it was Tarski or Strachey.
I mean, Strachey invented denotational semantics after all, and it’s
common for semantic brackets to be called “Strachey brackets”, but it
was neither who invented the notation!
According to this super interesting paper The history of the use
of \(\interp{-}\)-notation in natural
language semantics it was Dana Scott who came up with the notation
and suggested it to Strachey! Dana shows up in so many unexpected
places. I’m looking forward to reading this full paper.
Leave a comment on Twitter or send me an Email