\[
\newcommand{\ottnt}[1]{#1}
\newcommand{\ottsym}[1]{#1}
\newcommand{\ottmv}[1]{\mathit{#1}}
\newcommand{\func}[1]{\mathsf{#1}}
\newcommand{\Lin}[0]{\func{Lin}}
\newcommand{\Mny}[0]{\func{Mny}}
\newcommand{\Forget}[0]{\func{Forget}}
\newcommand{\Free}[0]{\func{Free}}
\newcommand{\Endo}[0]{\func{Endo}}
\newcommand{\mto}[1]{\xrightarrow{#1}}
\newcommand{\interp}[1]{[\negthinspace[#1]\negthinspace]}
\newcommand{\cat}[1]{\mathcal{#1}}
\newcommand{\catobj}[1]{\mathsf{Obj}(\cat{#1})}
\newcommand{\Obj}[1]{\catobj{#1}}
\newcommand{\catop}[1]{\cat{#1}^{\mathsf{op}}}
\newcommand{\sets}[0]{\mathsf{Set}}
\newcommand{\Set}[0]{\sets}
\newcommand{\mor}[1]{\mathsf{Mor}(\cat{#1})}
\newcommand{\Hom}[3]{\mathsf{Hom}_{#1}(#2,#3)}
\newcommand{\cur}[0]{\mathsf{cur}}
\newcommand{\curi}[0]{\mathsf{cur}^{-1}}
\newcommand{\app}[0]{\mathsf{app}}
\newcommand{\id}[0]{\mathsf{id}}
\newcommand{\injl}[0]{\mathsf{inj_l}}
\newcommand{\injr}[0]{\mathsf{inj_r}}
\newcommand{\pow}[1]{\mathcal{P}(#1)}
\newcommand{\oast}{⊛}
\]
My Ph.D. advisor Aaron Stump shared a very interesting historical anecdote about \(\interp{\text{semantic brackets}}\). I always thought it was Tarski or Strachey. I mean, Strachey invented denotational semantics after all, and it’s common for semantic brackets to be called “Strachey brackets”, but it was neither who invented the notation!
According to this super interesting paper The history of the use of \(\interp{-}\)-notation in natural language semantics it was Dana Scott who came up with the notation and suggested it to Strachey! Dana shows up in so many unexpected places. I’m looking forward to reading this full paper.
Leave a comment on Twitter or send me an Email