\[
\newcommand{\ottnt}[1]{#1}
\newcommand{\ottsym}[1]{#1}
\newcommand{\ottmv}[1]{\mathit{#1}}
\newcommand{\func}[1]{\mathsf{#1}}
\newcommand{\Lin}[0]{\func{Lin}}
\newcommand{\Mny}[0]{\func{Mny}}
\newcommand{\Forget}[0]{\func{Forget}}
\newcommand{\Free}[0]{\func{Free}}
\newcommand{\Endo}[0]{\func{Endo}}
\newcommand{\mto}[1]{\xrightarrow{#1}}
\newcommand{\interp}[1]{[\negthinspace[#1]\negthinspace]}
\newcommand{\cat}[1]{\mathcal{#1}}
\newcommand{\catobj}[1]{\mathsf{Obj}(\cat{#1})}
\newcommand{\Obj}[1]{\catobj{#1}}
\newcommand{\catop}[1]{\cat{#1}^{\mathsf{op}}}
\newcommand{\sets}[0]{\mathsf{Set}}
\newcommand{\Set}[0]{\sets}
\newcommand{\mor}[1]{\mathsf{Mor}(\cat{#1})}
\newcommand{\Hom}[3]{\mathsf{Hom}_{#1}(#2,#3)}
\newcommand{\cur}[0]{\mathsf{cur}}
\newcommand{\curi}[0]{\mathsf{cur}^{-1}}
\newcommand{\app}[0]{\mathsf{app}}
\newcommand{\id}[0]{\mathsf{id}}
\newcommand{\injl}[0]{\mathsf{inj_l}}
\newcommand{\injr}[0]{\mathsf{inj_r}}
\newcommand{\pow}[1]{\mathcal{P}(#1)}
\newcommand{\oast}{⊛}
\]
Books
Classic Papers
-
(1973) A Junction Between Computer Science and Category Theory: Basic concepts and examples (part I) by J.A. Goguen, J.W. Thatcher, E.G. Wagner and J.B. Wright
-
- Towards a Theory of Type Structure by J. C. Reynolds
<li>(1975) <a href="http://www.sciencedirect.com/science/article/pii/S0022000075800122">Discrete-Time Machines in Monoidal Closed Categories</a> by J. A. Goguen</li>
<li>(1976) <a href="https://books.google.com/books/about/A_Junction_Between_Computer_Science_and.html?id=MBtntwAACAAJ">A Junction Between Computer Science and Category Theory: Basic concepts and examples (part II)</a> by J.A. Goguen, J.W. Thatcher, E.G. Wagner and J.B. Wright</li>
<li>(1980) <a href="http://andrewkish-name.s3.amazonaws.com/scott80.pdf">Relating Theories of the Lambda-Calculus</a> by Dana Scott</li>
<li>(1983) <a href="http://plv.mpi-sws.org/plerg/papers/reynolds-param83-2up.pdf">Types, Abstraction, and Parametric Polymorphism</a> by J. C. Reynolds</li>
<li>(1989) <a href="http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=5D27B7929F03A5ED9A845DC543CA491D?doi=10.1.1.22.6153&rep=rep1&type=pdf">Linear Logic, *-Autonomous Categories and Cofree Coalgebras</a> by R.A.G. Seely</li>
<li>(1991) <a href="http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-213.pdf">The Dialectica Categories</a> by Valeria de Paiva</li>
Leave a comment by sending me an Email